1325 STOCK TYPES
...plus HUNDREDS MORE, custom-built from standing tools
INSTRUMENTS THAT STAY ACCURATE

YOUR ELECTRONIC PARTS DISTRIBUTOR HAS HUNDREDS IN STOCK!

Simpson ELECTRIC COMPANY
5200 West Kinzie St., Chicago 44, Ill. Phone: Elstebrook 9-1121
In Canada: Bach-Simpson, Ltd., London, Ontario

See the Simpson ADD-A-TESTER ADAPTERS they will increase the versatility of your 260 or 270 VOM's.

VOLT-OHM-MILLIAMMETER
270 SERIES 2

 Courtesy of:
Simpson260.com

SIMPSON ELECTRIC COMPANY
5200 W. Kinzie St., Chicago, Illinois 60644
Area Code 312, Telephone 379-1121
In Canada, Bach-Simpson, Ltd., London, Ontario

Copyright 1963 - Simpson Electric Co.,
7-64-UMO-B & L Rev. 3
Printed in U.S.A.
Part #1-110232
SECTION I

GENERAL DESCRIPTION

The 270 Series 2 is a rugged, accurate, compact, easy to operate instrument. It is used to measure electrical characteristics of circuits and circuit components. It indicates quantity measurements for D.C. and A.C. voltages, D.C. currents, resistances, decibels, and output voltages.

The 270 Series 2, is an improved version of the dependable 270. It incorporates a completely new, rugged, self-shielded, high torque, high flux annular meter movement with mirrored dial plus protective diode. The annular movement in addition to being self-shielded, is also equipped with spring backed jewel screws. This type of jewel allows the instrument to withstand more abuse due to shock and vibration without increasing the frictional error.

The 270 also incorporates a special calibration circuit to increase its accuracy. This allows us to provide you with more accurate unit to begin with. Should the unit get out of adjustment it facilitates its return to the original factory accuracy.

The 270 has predictable temperature response on all ranges and uses gold bonded germanium diodes on the A.C. ranges to provide higher precision and stability over a wide temperature range.

The 270 has been designed to utilize the most modern components and circuit techniques. It is manufactured by skilled workmen, using high quality materials, in our
General Description

modern plants, where we use the best machines, tools and test equipment that money can buy. It will, therefore, take considerable abuse and still continue to function. However, it does contain a very precise instrument movement and therefore, we urge that you treat it with the care it deserves. If you will keep it clean, free from continuous severe vibration, avoid dropping it and subjecting it to high electrical overloads; the 270 will give you many years of trouble-free dependable service.

PHYSICAL

FRONT PANEL

The instrument has a large easy-to-read 4½” meter at the top of the front panel. Below the meter are three operating controls and eight circuit jacks. All switch positions and circuit jacks are deeply engraved with white lettering on black phenolic to insure long time readability.

RANGE SWITCH

The range switch, in the center of the lower part of the front panel, has 12 positions. It may be turned in either direction to obtain any desired range and circuit position. There are six voltage ranges for D.C. and six for A.C., six ranges for direct current, and three resistance ranges.

FUNCTION SWITCH

The function switch is located at the left hand side of the lower part of the front panel. It has three positions: -D.C., +D.C., and A.C. When direct current, D.C. voltage, or resistance is to be measured, the function switch may be set at -D.C. or +D.C., depending on the polarity of current or voltage. Reversing the test lead connections without removing them from the circuit under test is accomplished by using the function switch.

ZERO OHMS

The control at the lower right on the panel is marked ZERO OHMS. This variable resistance in the ohmmeter circuit is used to compensate for the aging of the internal batteries. Use it to adjust the meter indication to zero (at the right end of the scale) with the test leads shorted together whenever the ohmmeter circuit is used.

CIRCUIT JACKS

There are eight jacks, two being located in each corner of the front panel. These are the connection points for the test leads. Plug the prods of the test leads into the proper jacks to obtain the circuit and range desired for each application.

At the lower left are COMMON- and + jacks. These are the jacks that will be used most. Connect the black test lead to COMMON- for all circuits and ranges except 10 Amps D.C. Connect the red test lead to the + jack for all circuits and ranges except those designated by the other circuit jacks.

Across the top of the panel are jacks marked -10 A., OUTPUT, 50μAMPS, and +10 A. For all audio frequency output voltage ranges, use the red test lead connected to the OUTPUT jack. For the 50 microampere or 250 milli-
General Description

Volt D.C. range, use the red test lead connected to the 50μAmps jack. For the 10 ampere D.C. range, use the black test lead in the -10 A. jack and the red test lead in the +10 A. jack.

PRINTED CIRCUIT
Conforming to the latest engineering developments, almost all the component parts of the Simpson 270 are mounted on a printed circuit. This simplifies assembly, reduces maintenance, and extends the useful life of the instrument (see page 28 for removal instructions).

PHENOLIC CASE
The Simpson 270 is housed in a heavy black phenolic case. It is molded with heavy reinforced walls for maximum durability. All the component parts in the 270 are attached or mounted to the front panel: the entire instrument slips into and out of the case in one piece.

ADJUST-A-VUE HANDLE
The comfortable handle is attached on each side of the instrument case. The handle may be used to support the instrument in a convenient sloping position for easy viewing on the bench top. Of course, the 270 can also be placed in either a vertical or horizontal position (see note on page 9).

TEST LEADS
Each Simpson Volt-Ohm-Milliammeter 270 is furnished with one pair of four-foot test leads. One lead is black and the other red for easy polarity identification.

General Description
The wire is very finely stranded and extra-flexible. Its insulation is a special high-grade rubber which has far more insulation strength than the highest voltages to which your instrument will ever be subjected.

TEST LEAD INSPECTION
Periodic inspection of the test leads is recommended to detect cuts, burns or other damage that could reduce the insulation strength of the leads. When replacement is indicated, ask your local distributor for catalog number 7500.

OVERLOAD PROTECTION
Your 270 has been designed to minimize the possibility of accidental damage due to overloads. Specially produced diodes protect the movement from burn-out or mechanical damage such as bent pointer even with 1000 times the normal current applied.

In addition, a fuse is provided to help protect the circuitry from damage due to overloads. This protective combination will prevent serious damage to your 270 in most cases of accidental misuse. However, no overload protection system is completely foolproof, and misapplication on high voltage circuits can damage any VOM protected or not. Care and caution should always be exercised to protect both you and your 270.

SIZE AND WEIGHT
The 270 measures 5-1/4" x 7" x 3-1/8". It weighs 3-1/4 pounds.
Electrical Measurement Ranges

D.C. Voltage

<table>
<thead>
<tr>
<th>Sensitivity: 20,000 ohms-per-volt</th>
<th>Accuracy at 77°F</th>
<th>Accuracy at 67-87°F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 250 millivolts</td>
<td>1.75%</td>
<td>1.75%</td>
</tr>
<tr>
<td>0 – 2.5 volts</td>
<td>1.75%</td>
<td>1.75%</td>
</tr>
<tr>
<td>0 – 10 volts</td>
<td>1.25%</td>
<td>1.75%</td>
</tr>
<tr>
<td>0 – 50 volts</td>
<td>1.25%</td>
<td>1.75%</td>
</tr>
<tr>
<td>0 – 250 volts</td>
<td>1.25%</td>
<td>1.75%</td>
</tr>
<tr>
<td>0 – 1000 volts</td>
<td>1.25%</td>
<td>1.75%</td>
</tr>
<tr>
<td>0 – 5000 volts</td>
<td>2.25%</td>
<td>2.75%</td>
</tr>
</tbody>
</table>

A.C. Voltage

<table>
<thead>
<tr>
<th>Sensitivity: 5,000 ohms-per-volt</th>
<th>Accuracy at 77°F</th>
<th>Accuracy at 67-87°F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 2.5 volts</td>
<td>2.0%</td>
<td>3.0%</td>
</tr>
<tr>
<td>0 – 10 volts</td>
<td>2.0%</td>
<td>3.0%</td>
</tr>
<tr>
<td>0 – 50 volts</td>
<td>2.0%</td>
<td>3.0%</td>
</tr>
<tr>
<td>0 – 250 volts</td>
<td>2.0%</td>
<td>3.0%</td>
</tr>
<tr>
<td>0 – 1000 volts</td>
<td>2.0%</td>
<td>3.0%</td>
</tr>
</tbody>
</table>

Direct Current

<table>
<thead>
<tr>
<th>0 – 50 microamperes</th>
<th>Accuracy at 77°F</th>
<th>Accuracy at 67-87°F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 1 milliampere</td>
<td>1.25%</td>
<td>1.75%</td>
</tr>
<tr>
<td>0 – 10 milliampere</td>
<td>1.25%</td>
<td>1.75%</td>
</tr>
<tr>
<td>0 – 100 milliampere</td>
<td>1.25%</td>
<td>1.75%</td>
</tr>
<tr>
<td>0 – 500 milliampere</td>
<td>1.25%</td>
<td>1.75%</td>
</tr>
<tr>
<td>0 – 10 amperes</td>
<td>1.25%</td>
<td>1.75%</td>
</tr>
</tbody>
</table>

D.C. Resistance

<table>
<thead>
<tr>
<th>Resistance</th>
<th>Accuracy at 77°F</th>
<th>Accuracy at 67-87°F</th>
</tr>
</thead>
<tbody>
<tr>
<td>R x 1 for 0–200 ohms</td>
<td>1.5° of arc</td>
<td>1.75° of arc</td>
</tr>
<tr>
<td>(12 ohms center)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R x 100 for 0–2000,000 ohms</td>
<td>1.0° of arc</td>
<td>1.25° of arc</td>
</tr>
<tr>
<td>(1200 ohms center)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R x 10,000 for 0–20 megohms</td>
<td>1.0° of arc</td>
<td>1.25° of arc</td>
</tr>
<tr>
<td>(120,000 ohms center)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A.F. Output Voltage

With 0.1μf internal series capacitor

<table>
<thead>
<tr>
<th>0 – 2.5 volts</th>
<th>Accuracy at 67-87°F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 10 volts</td>
<td>Accuracy at 67-87°F</td>
</tr>
<tr>
<td>0 – 50 volts</td>
<td>Accuracy at 67-87°F</td>
</tr>
<tr>
<td>0 – 250 volts</td>
<td>Accuracy at 67-87°F</td>
</tr>
</tbody>
</table>

Volume Level in Decibels

With zero DB equal to 1 milliwatt across a 600 ohm line

<table>
<thead>
<tr>
<th>Range</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>-20 to +10 DB</td>
<td>8 to +22 DB</td>
</tr>
<tr>
<td>+6 to +36 DB</td>
<td>+20 to +50 DB</td>
</tr>
</tbody>
</table>

Accuracies are guaranteed when the 270 is used with the meter dial in a horizontal plane.
General Description

In summary, the change in accuracy with a 10° Fahrenheit temperature change from 77°F is ±1/2% on DC and ±1% on AC. These accuracy changes are linear over this temperature range, being ±0.05% per °F. on DC and ±0.1% per °F. on AC.

In order to apply the temperature correction factors indicated above, the temperature of the electrical elements of the 270 must be known. It can be assumed that this temperature is that of the area in which the 270 is being used if it has been in this area (or another area of very nearly equal temperature) for a period of at least four hours. This time lapse can be materially reduced by the removal of the 270 from its case and providing rapid air flow around the electrical elements.

The 270 has a 100 degree dial with the D.C. scale divided into equal intervals of 2 degrees each. The accuracies stated as "x% of full scale value" can be directly visualized as \(\frac{x}{2} \) divisions of DC scale. For example, "2% of FS" is equivalent to saying "1 division of DC scale." This is an exact method when measuring DC and close enough for practical purposes on the ohms, AC, and db scales.

INTERNAL BATTERIES

There are five 1.5 volt batteries inside the instrument. These are used for the ohmmeter circuits. One large cell is used to furnish 1.5 volts for the R x 1 and R x 100 ranges. Four smaller cells are added in series to furnish 7.5 volts for the R x 10,000 range.

Each battery is held in place with two special spring clips which also serve as battery contacts. The polarity symbols are marked on the panel. Always observe polarity when replacing batteries.

FREQUENCY RESPONSE

Your Simpson 270 has an excellent frequency response for A.C. and A.F. voltage measurements. It is essentially "flat" through the range from 20 cycles per second up to 30,000 cycles per second. See pages 17 and 19 for frequency response curves.

TRANSPORT

It is advisable to shunt the meter movement during transport. This is readily achieved by setting the function switch at D.C. and the range switch at 500MA.
SECTION II
OPERATING INSTRUCTIONS

CAUTION

Connecting test leads to an energized circuit can present personal and/or equipment hazards. Turn off power before attaching or removing test leads in or adjacent to high voltage circuits. This procedure applies particularly to a current measurement in an inductive circuit due to the presence of higher than normal voltages if the current circuit is opened.

Operating Instructions

ADJUST POINTER FOR ZERO

Before any measurements are made, check to see that the pointer indicates zero when the meter is in its operating position. If the pointer is off zero, adjust the screw located in the phenolic case below the center of the meter scale, as shown in Figure 1. Use a small screwdriver to turn this screw slowly clockwise or counterclockwise until the pointer is exactly over the zero mark at the left side of the scale.

D.C. VOLTAGE MEASUREMENTS,
0-250 MILLIVOLT RANGE ONLY

1. Set the function switch at +D.C.
2. Connect the black test lead in the COMMON jack and the red test lead in the 50μAMPS jack.
3. Set the range switch at 50μAMPS (common position with 50 V.).
4. Connect the black test lead to the negative side of the circuit to be measured, and the red test lead to the positive side of the circuit.
5. Turn on power. If meter deflects to left of zero, turn off power and reverse the test lead connections. Then turn on power again.
6. Read the voltage on the black arc marked D.C., and use the figures marked 0–250; read directly in millivolts.
7. Turn off power in the circuit which is being measured before disconnecting meter leads.
Operating Instructions

D.C. VOLTAGE MEASUREMENTS, 0 – 1000 VOLTS

1. Set the function switch on the left hand side of the front panel at +D.C.
2. Plug the black test lead into the COMMON – jack and the red test lead into the + jack.
3. Set the range selector switch in any of the five voltage range positions. These are marked 2.5 V., 10 V., 50 V., 250 V., and 1000 V. When in doubt as to the voltage present, always use the highest voltage range as a protection to the instrument. Observe the meter reading. If the voltage is within a lower range, the switch may be set for the lower range to obtain a more accurate reading.
4. Connect the black test lead to the negative side of the circuit to be measured and the red test lead to the positive side of the circuit.
5. Turn on the power in the circuit to be tested. If the pointer deflects to the left of zero, the anticipated polarity is opposite the actual circuit polarity. Turn off the power in the circuit which is being tested. Set the function switch at –D.C., and turn on the power again. This will correct the polarity as applied to the meter.
6. Read the voltage on the black arc marked D.C. which is second from the top of the dial.
 For the 2.5 V. range, use the 0–250 figures and divide by 100.
 For the 10 V., 50 V., and 250 V. ranges, read the figures directly on the scale.
 For the 1000 V. range, use the 0–10 figures and multiply by 100.

Operating Instructions

7. Turn off the power in the circuit which is being measured before disconnecting meter leads.

D.C. VOLTAGE MEASUREMENTS, 5000 VOLT RANGE

WARNING

Be extremely careful when working in high voltage circuits. Do not touch the meter or test leads while power is on in the circuit being measured.

1. Set the function switch at +D.C.
2. Set the range selector switch at 5000 V.
3. Connect the black test lead into the COMMON – jack and the red test lead into the D.C. 5000 V. jack.
4. Be sure power is off in the circuit to be measured and all capacitors have been discharged; connect the black test lead to the negative side of the circuit to be measured and the red test lead to the positive side of the circuit.
5. Turn on the power in the circuit. Do not touch the meter or test leads. If the pointer deflects to the left side of zero, the anticipated polarity is opposite the actual circuit polarity. Turn off the power in the circuit being tested. Set the function switch at –D.C., and turn on the power again. This will correct the polarity as it is applied to the meter.
6. Read the voltage using the 0–50 figures on the black arc which is second from the top of the scale. Multiply the reading by 100.
7. Turn off the power before disconnecting the test leads.

NOTE: To measure higher D.C. Voltage, see section IV for high voltage accessory probes.
Operating Instructions

FIG. 3 CONTACTS AND SWITCH POSITIONS FOR A.C. VOLTS

MEASURING A.C. VOLTAGES TO 1000 VOLTS

The Simpson Volt-Ohm-Milliammeter 270 measures A.C. voltage in terms of the R.M.S. value of a sine wave. This is accomplished by using two germanium diodes in a modified full wave bridge circuit.

The 270 has been especially designed to give a wide frequency response, making it useful over a range from 20 cycles per second to 200,000 cycles per second. The curve which follows shows the response of the 2.5, 10, and 50 volt ranges.

1. Set the function switch at A.C.
2. Set the range selector switch in any of the five voltage range positions, marked 2.5 V., 10 V., 50 V., 250 V., and 1000 V. When in doubt as to the voltage present,

FIG. 4 FREQUENCY RESPONSE FOR 270 SERIES 2

always use the highest voltage range as a protection to the instrument. Observe the meter reading. If the voltage is within a lower range, the switch may be set for the lower range to obtain a more accurate reading.

3. Plug the black test lead into the COMMON - jack and the red test lead into the + jack.
4. Be sure power is turned off in the circuit to be measured and connect the test leads across the voltage source.
5. Turn on the power in the circuit to be measured.
 For the 0 - 2.5 V. range, read the value directly on the special arc marked 2.5 V.A.C. ONLY.
Operating Instructions

For the 10 V., 50 V., and 250 V. ranges, read the red arc marked A.C., and use the red figures directly below the arc.

For the 1000 V. range, read the red arc marked A.C.; use the 0–10 figures and multiply by 100.

MEASURING A.C. VOLTAGE TO 5000 VOLTS

WARNING

Be extremely careful when working in high voltage circuits. Do not touch the meter or test leads while power is on in the circuit being measured.

1. Set the function switch at A.C.
2. Set the range selector switch at 5000 V.
3. Connect the black test lead into the COMMON—jack and the red test lead into the A.C. 5000 V. jack.
4. Be sure the power is off in the circuit to be measured and that all its capacitors have been discharged. Connect the test leads into the circuit.
5. Turn on the power in the circuit to be measured. Do not touch the meter or test leads.
6. Read the voltage on the red arc marked A.C.; use the 0–50 figures and multiply by 100.
7. Turn off the power before disconnecting the test leads.

MEASURING OUTPUT VOLTAGES

An output voltage is the A.C. component only, when there is a mixture of A.C. and D.C. voltages. This occurs mostly in amplifier circuits.

Operating Instructions

FIG. 5 FREQUENCY RESPONSE FOR OUTPUT MEASUREMENTS

The 270 has a capacitor in series with the OUTPUT jack. This blocks the D.C. component of the current in the measuring circuit, but allows the A.C., or desired component, to pass on to the meter circuit. The blocking capacitor placed in series with the A.C. voltage measuring circuits alters the A.C. response. The above curves show the frequency response of the 2.5, 10, and 50 volt ranges.

1. Set the function switch on the left hand side of the front panel at A.C.
2. Connect the black test lead in the COMMON—jack and the red test lead in the OUTPUT jack.
Operating Instructions

MEASURING DECIBELS

For some applications, output voltages and audio frequency voltages are frequently measured in terms of decibels. The decibel scale (DB), at the bottom of the dial, is numbered from -20 through 0 to +10.

To measure decibels, read the DB arc after proceeding according to instructions for A.C. voltage measurements.

The DB readings obtained will be correct on an absolute scale if you are using a 0 DB power level of 0.001 watt in 600 ohms, and if the voltage which you read was measured across 600 ohms.

To obtain absolute DB values across 600 ohms:

For the 10 V. range, read the DB arc and add +12 DB to the reading.

For the 50 V. range, read the DB arc and add +26 DB to the reading.

For the 250 V. range, read the DB arc and add +40 DB to the reading.

If the reference level is 0 DB = 0.001 watt in 500 ohms, subtract (+)7 DB from the reading to obtain the absolute value of decibels.

OHMmeter CIRCUIT

Internal batteries are used to provide power for resistance measurements. Since the batteries are subject to deterioration over long periods of time, there is a compensating
Operating Instructions

4. Observe the meter indication. It should read 0 on the right hand end of the OHMS arc, which is at the top of the dial.

5. If the pointer does not read 0, rotate the ZERO OHMS knob until it does. If you cannot bring the pointer far enough to read 0, one or more batteries need to be replaced.

6. When the pointer shows zero, unclip the shorted test leads; the ohmmeter circuit is now ready to measure resistance.

MEASURING RESISTANCES

To measure resistance, proceed as follows:

1. Set the range switch in one of the resistance range positions.
 Use Rx 1 for resistance readings from 0 to 200 ohms.
 Use Rx 100 for resistance readings from 200 up to 20,000 ohms.
 Use Rx 10,000 for resistance readings above 20,000 ohms.

2. Set the function switch at either -D.C. or +D.C.

3. Connect the black test lead in the COMMON - jack and the red test lead in the + jack.

4. Short the test leads together and adjust for zero ohms (see instructions above).

5. Separate the test leads and connect them across the resistance which is to be measured. If there is a "for-
Operating Instructions

ward" and backward" resistance such as in semiconductor rectifiers, switch back and forth between the two D.C. positions of the function switch to reverse this polarity.

NOTE

The resistance of such rectifiers will measure different values on different resistance ranges of the 270. Thus, a crystal diode which measures 80 ohms on the R x 1 range may measure 300 ohms on the R x 100 range. This is normal and is a result of the diode characteristic. The difference in values does not indicate any fault in the ohmmeter.

6. Read the indication on the OHMS arc at the top of the dial. Note that this arc reads from right to left for increasing values.

7. Multiply the reading by the multiplier factor at the switch position for the resistance value in ohms. "K" on the dial stands for "thousand".

8. Resistance measurements in transistor circuits should be made only after the transistor has been isolated from the circuit.

MEASURING DIRECT CURRENTS,
0 TO 50 MICROAMPERES

CAUTION

Never connect the test leads directly across any voltage when the 270 is used as a current meter.

FIG. 8 CONTACTS AND SWITCH POSITIONS FOR DIRECT CURRENTS
except when it is used as a 0-250 millivoltmeter.
This would damage the instrument. Always connect the meter in series with the load across the voltage source.

1. Set the function switch at +D.C.
2. Connect the black test lead in the COMMON - jack and the red test lead in the 50 µAMPS jack.
3. Set the range switch at 50 µAMPS (common position with 50 V.).
4. Open the circuit in which the current is to be measured. Connect the meter in series with the circuit. Connect the red test lead toward the positive side, and the black test lead toward the negative side of the circuit.
5. Turn on the power in the circuit which is to be measured. Observe the meter. If the pointer is deflected to
Operating Instructions

the left, the current polarity is opposite to that which was anticipated. Turn off the power and reverse leads.
6. Read the current directly on the black D.C. arc. Use the 0—50 figures. The current value is shown in microamperes.
7. Turn off the circuit power. Remove the test leads and restore the circuit continuity.

MEASURING DIRECT CURRENTS,
0 TO 500 MILLIAMPERES

1. Set the function switch at +D.C.
2. Connect the black test lead in the COMMON— jack and the red test lead in the + jack.
3. Set the range switch in any of the four range positions required. These are marked 1 MA., 10 MA., 100 MA., and 500 MA.
4. Open the circuit which is to be measured. Connect the meter in series with the circuit. Connect the red test lead toward the positive side and the black test lead toward the negative side of the circuit.
5. Turn on the power in the circuit which is to be measured. Observe the meter. If the pointer is deflected to the left, the current polarity is opposite to that which was anticipated. Turn off the power, set the function switch at —D.C., and then turn on the power again.
6. Read the current directly on the black D.C. arc.
 For the 1 MA. range use the 0—10 figures and divide by 10.
 For the 10 MA. range use the 0—10 figures directly.

Operating Instructions

For the 100 MA. range read the 0—10 figures and multiply by 10.
For the 500 MA. range read the 0—50 figures and multiply by 10.
The current values are in milliamperes.
7. Turn off the circuit power. Remove the test leads and restore circuit continuity.

MEASURING DIRECT CURRENTS,
0 TO 10 AMPERES

1. Connect the black test lead in the —10 A. jack and the red test lead in the +10 A. jack.
2. Set the range selector switch at 10 AMPS (common with 10 MA.).
3. Open the circuit which is to be measured. Connect the meter in series with the circuit. Connect the red test lead toward the positive side and the black test lead toward the negative side of the circuit.
4. Turn on the power in the circuit which is to be measured. Observe the meter. If the pointer is deflected to the left, the current polarity is opposite to that which was anticipated. Turn off the power, reverse the test lead connections, and turn on the power again.
5. Read the current directly on the black D.C. arc. Use the 0—10 figures. The current values are in amperes.
6. Turn off the circuit power. Remove the test leads and restore circuit continuity.
SECTION III

MAINTENANCE

HOW TO OPEN THE CASE

The case of the Simpson Volt-Ohm-Miliammeter 270 has been designed to provide easy and quick access to the inside for all necessary adjustment and replacement of parts. Use a 1/4-inch screwdriver to remove the four screws through the bottom of the case. Then slip the entire front panel forward out of the case. The meter, the front panel, the printed circuit, and the batteries are all attached together and will come out as a unit.

BATTERY REPLACEMENT

There are five batteries inside the case of the 270. They are used to supply power for resistance measurements. One is a large size (#2, Size D) flashlight cell, and the other four are smaller (#A) flashlight cells.

When it is no longer possible to bring the pointer to 0 for the R x 1 and R x 100 ranges (see ZERO OHMS ADJUST, page 22), replace the large cell with a fresh one. When it is no longer possible to bring the pointer to 0 on the R x 10,000 range, replace the four smaller cells with fresh ones. This will restore operation of the ohmmeter circuit.

BATTERY REPLACEMENT NOTE

When batteries reach the end of their useful life, they should be replaced promptly. Failure to do so may result in extensive damage to your 270, due to battery leakage, even though the battery may be advertised as "Leakproof".

OBSERVE POLARITY

When cells are replaced, be sure to observe the polarity of the battery circuit. The cells are each held in place with specially designed spring clips which also act as battery contacts. Battery polarity is shown on the panel.

SUB-PANEL PARTS PLACEMENT

Beneath each resistor on the printed circuit is its part number, as it is shown on the schematic diagram and in the parts list. This mark will eliminate any doubt which may arise as to the location of any of the resistors.

RECTIFIER REPLACEMENT AND RECALIBRATION

There are two small rectifiers which are located at the top of the printed circuit, near the large 1.5 volt cell. These are used to rectify the A.C. voltages for measurement. They are shown as D-1 and D-2 in the overall schematic diagram, Fig. 9.

Both rectifiers act in the meter circuit to effectively create a full wave rectifying action. If either or both should fail, the meter will show incorrect indications.

In case of rectifier failure, order a new rectifier from a Simpson Parts Depot (pages 39-42), specifying the part number as shown in the parts list. In order to maintain the accuracy of the 270, it is essential to replace rectifiers with the type furnished in the original unit.
Maintenance

After replacing either or both rectifiers, test the accuracy of A.C. voltage indications. If necessary, recalibrate the circuit by adjusting rheostats R-28 and R-31 as follows:

1. Set the function switch at A.C. and the range switch at 250 V.
2. Connect the red test lead in the + jack and the black test lead in the COMMON − jack.
3. From a standard voltage source, apply 250 volts A.C. to the red and black test lead. Adjust rheostat R-31 (which is next to the + meter stud on the printed circuit board) so the meter reads full scale. Turn power off.
4. Set the range switch to 2.5 V. Apply 2.5 volts A.C. to the red and black test leads. Adjust rheostat R-28 (which is next to R-31) so the meter reads full scale. Turn power off.

If no standard voltage supply is available for the above procedure, return your 270 to the Simpson Electric Company or an Authorized Warranty Repair Station for calibration.

RESISTOR REPLACEMENT

Most of the resistors for the Simpson 270 are on the rear of the printed circuit. This makes them easily accessible for trouble-shooting and repair.

When it is necessary to replace any of the resistors in the circuit, first obtain an exact equivalent resistor. The best way to do this is to order the resistor or resistors directly from a Simpson Parts Depot (page 39), specifying the part number as shown in the parts list. Then clip the defective resistor off the printed circuit board, leaving the leads in the board to use as connections for the replacement.

Carefully twist the leads for the new resistor around the leads left from the defective resistor, and solder each connection. Trim away all excess and check that no shorts have developed due to the substitution.

REMOVING THE PRINTED CIRCUIT

When access is required to the under-side of the printed circuit, or to the parts which are located between it and the front panel, remove the printed circuit.

Use the following procedure:

1. Set the function switch at D.C. and the range switch at 2.5 V.
2. Remove the knob for the ZERO OHMS control.
3. Remove the two screws through the lower part of the printed circuit board.
4. Remove the two hex nuts from the meter studs on the top of the printed circuit board.
5. Carefully pry out the battery contact at the + terminal for the small 1.5 volt cells. This is connected to the upper left hand corner of the printed circuit board with an orange lead.
6. Lift the printed circuit board away from the front panel. The entire board, with the switch wafers in place, will come up in one piece.
7. After removal, do not turn knobs on front panel or move any rotors on switches until reassembled.

FUSE REPLACEMENT

Remove the front panel from the case and disconnect the burned-out fuse, using a small (60-watt or less) soldering iron. Replace with a 1 amp, 250 volt pigtail fuse, type 3AG or equivalent only.

PARTS LIST

<table>
<thead>
<tr>
<th>Reference</th>
<th>Symbol</th>
<th>Description</th>
<th>Simpson Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>Resistor, 1138 ohms (all resistors ± 1/2%)</td>
<td>1-117141</td>
<td></td>
</tr>
<tr>
<td>R2</td>
<td>Resistor, 110 ohms</td>
<td>1-117142</td>
<td></td>
</tr>
<tr>
<td>R3</td>
<td>Resistor, 21,850 ohms</td>
<td>1-117143</td>
<td></td>
</tr>
<tr>
<td>R4</td>
<td>Resistor, 117,700 ohms</td>
<td>1-117144</td>
<td></td>
</tr>
<tr>
<td>R5</td>
<td>Resistor, 238 ohms (bobbin)</td>
<td>10-805075</td>
<td></td>
</tr>
<tr>
<td>R6</td>
<td>Resistor, 37,500 ohms</td>
<td>1-117145</td>
<td></td>
</tr>
<tr>
<td>R7</td>
<td>Resistor, 200,000 ohms</td>
<td>1-117146</td>
<td></td>
</tr>
<tr>
<td>R8</td>
<td>Resistor, 800,000 ohms</td>
<td>1-117147</td>
<td></td>
</tr>
<tr>
<td>R9</td>
<td>Resistor, 3.75 megohms</td>
<td>1-117135</td>
<td></td>
</tr>
<tr>
<td>R10</td>
<td>Resistor, 45,000 ohms</td>
<td>1-117148</td>
<td></td>
</tr>
<tr>
<td>R11</td>
<td>Resistor, 150,000 ohms</td>
<td>1-117149</td>
<td></td>
</tr>
<tr>
<td>R12</td>
<td>Resistor, 1 megohm</td>
<td>1-117150</td>
<td></td>
</tr>
<tr>
<td>R13</td>
<td>Resistor, 4 megohms</td>
<td>1-117151</td>
<td></td>
</tr>
<tr>
<td>R14</td>
<td>Resistor, 15 megohms</td>
<td>1-117136</td>
<td></td>
</tr>
<tr>
<td>R15</td>
<td>Resistor, 11.2 ohms (bobbin)</td>
<td>10-805073</td>
<td></td>
</tr>
<tr>
<td>R16</td>
<td>Resistor, 0.452 ohm (bobbin)</td>
<td>10-805027</td>
<td></td>
</tr>
</tbody>
</table>
Maintenance

<table>
<thead>
<tr>
<th>Reference Symbol</th>
<th>Description</th>
<th>Simpson Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>R18</td>
<td>Resistor, 22.5 ohms (bobbin)</td>
<td>10-805076</td>
</tr>
<tr>
<td>R19</td>
<td>Resistor, 2 ohms (bobbin)</td>
<td>10-805077</td>
</tr>
<tr>
<td>R20</td>
<td>Resistor, 80 megohms</td>
<td>1-117138</td>
</tr>
<tr>
<td>R21</td>
<td>Resistor, 20.2 megohms</td>
<td>1-117137</td>
</tr>
<tr>
<td>R22</td>
<td>Resistor, 0.025 Shunt Assy., 10 amp</td>
<td>0-007093</td>
</tr>
<tr>
<td>R25</td>
<td>Potentiometer, 10,000 ohms ± 10%</td>
<td>1-115764</td>
</tr>
<tr>
<td>R26</td>
<td>Resistor, 7500 ohms</td>
<td>1-117152</td>
</tr>
<tr>
<td>R27</td>
<td>Rheostat, 5000 ohms ±10%</td>
<td>1-116254</td>
</tr>
<tr>
<td>R28</td>
<td>Rheostat, 5000 ohms ±10%</td>
<td>1-116254</td>
</tr>
<tr>
<td>R29</td>
<td>Resistor, 4000 ohms</td>
<td>1-117140</td>
</tr>
<tr>
<td>R30</td>
<td>Resistor, 4000 ohms</td>
<td>1-117140</td>
</tr>
<tr>
<td>R31</td>
<td>Rheostat, 5000 ohms ±10%</td>
<td>1-116254</td>
</tr>
<tr>
<td>R32</td>
<td>Potentiometer 200K ±20%</td>
<td>1-110193</td>
</tr>
<tr>
<td>C1</td>
<td>Capacitor, 0.1 μf, 400 v.</td>
<td>1-113733</td>
</tr>
<tr>
<td>D1</td>
<td>Rectifier, Germanium</td>
<td>1-117139</td>
</tr>
<tr>
<td>D2</td>
<td>Rectifier, Germanium</td>
<td>1-117139</td>
</tr>
<tr>
<td>D3</td>
<td>Diode Silicon</td>
<td>1-110670</td>
</tr>
<tr>
<td></td>
<td>Test lead set (one red and one black)</td>
<td>7500</td>
</tr>
<tr>
<td></td>
<td>Phenolic case (less handle)</td>
<td>3-320141</td>
</tr>
<tr>
<td></td>
<td>Carrying handle plastic cover</td>
<td>1-115316</td>
</tr>
</tbody>
</table>

Maintenance

<table>
<thead>
<tr>
<th>Reference Symbol</th>
<th>Description</th>
<th>Simpson Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cover Assembly</td>
<td>0-005674</td>
</tr>
<tr>
<td></td>
<td>(This includes cover glass glazed into phenolic frame and associated hardware. NOTE — Standard glazing compounds can not be used for re-glazing)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cell, 1½ V., #2, Size D</td>
<td>1-111798</td>
</tr>
<tr>
<td></td>
<td>Cell, 1½ V., Size Z</td>
<td>1-111802</td>
</tr>
<tr>
<td></td>
<td>Meter Assembly</td>
<td>15-302270-2</td>
</tr>
<tr>
<td></td>
<td>(This includes engraved panel, meter, dial, mirror, and cover assembly)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carrying handle insert (aluminum handle without plastic covering)</td>
<td>3-810427</td>
</tr>
<tr>
<td></td>
<td>Set screw (for knob 3-260180)</td>
<td>1-114178</td>
</tr>
</tbody>
</table>

Knobs:
- For Function switch | 1-115789
- For Range switch (less set screw) | 3-260180
- For Zero Ohms Adjust | 1-115790

F1 Fuse, 1 amp, 250 volt, pigtail type 3AG or equivalent | 1-117702
SECTION IV
APPLICATIONS

SIMPLE CAPACITOR CHECKS
The ohmmeter circuit of the 270 can be used to identify good, open, and short conditions for many capacitors. Use the R x 10,000 range for best results.

A good capacitor will allow current to flow, deflecting the meter pointer, while it is charging up to the applied voltage. This produces a swing on the meter, with a gradual return of the pointer to infinity at the left hand side of the scale. The greater the capacity, the more the pointer will swing and the longer it will take for it to return to infinity.

If the capacitor is open, there will be no pointer deflection at the beginning of this test. Note that very small capacitors will have only a very slight deflection and a rapid return to infinity. Watch the meter closely when you test small capacitors.

If the capacitor is shorted, the pointer will not return to infinity. So when the pointer remains deflected on the ohms scale, and does not return, even slowly, this probably indicates a short in the capacitor.

Always reconfirm the results of these simple tests with more conclusive test equipment, or by replacement checks.

CAUTION: DISCHARGE CAPACITOR completely before connecting ohmmeter.

APPLICATIONS
ACCESSORY DC HIGH VOLTAGE PROBES
DC HIGH VOLTAGE TEST PROBES
(20,000 OHMS PER VOLT)

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>DC Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>0507</td>
<td>10,000 Volts DC</td>
</tr>
<tr>
<td>0508</td>
<td>25,000 Volts DC</td>
</tr>
<tr>
<td>0509</td>
<td>50,000 Volts DC</td>
</tr>
</tbody>
</table>

GENERAL DESCRIPTION
The DC high voltage probes extend the range of a 20,000 ohms per volt multimeter in a safe, convenient manner at nominal cost. Their primary purpose is the measurement of terminal potentials of very high voltage, very low power capacity, direct current sources, example of which are anode supplies used in television receivers and other cathode ray tube type circuitry.

The probe body is made of high temperature polystyrene in order to provide high dielectric strength and low leakage. It contains a high megohm precision resistor.

A shielded cable and internal probe shield is used to protect the operator from any possible flashover and to ground any electrostatic charges that might accumulate on the probe body.

The internal shield and cable shield are connected to the ground return lead by a flexible copper braid between the two elbow connectors. A 48 inch ground return lead with an insulated clip completes the test lead set. No additional wires are needed.
The DC high voltage test probes are available at your local electronics parts distributors.

APPLICATIONS

The Volt-Ohm-Milliammeter, commonly called the Multimeter, has developed into one of the most valuable instruments in all electrical and electronic fields. The applications of the Multimeter are so numerous and varied that, without exception, they can be said to cover the entire field of electrical measurements.

SIMPSON WARRANTY REPAIR STATIONS AND PARTS DEPOTS

Arizona, Phoenix
Metercraft Inc.
3308 N. 24th St.
States: Arizona

California, San Diego
Metermaster/San Diego, Inc.
5049 Weeks Avenue
San Diego Area

California, Los Angeles
Quality Electric Company
3700 South Broadway
States: So. California below Fresno and Arizona

California, San Francisco
Pacific Electrical Instrument Lab.
111 Main Street
States: No. California above Fresno and Nevada

Canada
Bach-Simpson Ltd.
1255 Brydges Street
P. O. Box 484
London, Ontario Canada

Colorado, Denver
Meter-Master Instrument Service
2145 S. Kalamath Street
States: Wyoming, Colo., and New Mexico

Connecticut, New Haven
Kaufman Instrument Labs Inc.
810 Dixwell Avenue
States: Connecticut

Florida, Orlando
Electro Tech Inc.
Florida Division
307-27th Street
States: Florida

Georgia, Atlanta
Electro-Tech Inc.
690 Murphy Ave. S. W.
States: Alabama, Georgia and Tenn.
Illinois, Chicago
Simpson Electric Company
5290 W. Kinzie Street

Illinois, Chicago
Pacific Indicator Company
5217 W. Madison Street
States: Chicago, Wisconsin and Indiana

Kansas, Shawnee Mission
Sturtz Instrument Co.
4705 Mission Road
States: Kansas

Louisiana, New Orleans
Industrial Instrument Works
3328 Magazine Street
States: Arkansas, Mississippi and Louisiana

Massachusetts, Cambridge
Alvin S. Masic
363 Walden Street
States: Vermont, New Hampshire, Massachusetts
Rhode Island and Maine

Michigan, Detroit
Ram Meter Inc.
1100 Hilton Road Ferndale
States: Michigan

Minnesota, Minneapolis
Instrumentation Services Inc.
917 Plymouth Avenue N.
States: Minnesota, North, South Dakota and Nebraska

Missouri, St. Louis
Scherrer Instruments
5449 Delmar Blvd.
States: Illinois below Peoria, Iowa, Missouri

New Jersey, Riverdale
A & M Instrument Service, Inc.
11 Hamburg Turnpike
States: N. Jersey

New Mexico, Albuquerque 87108
Western Instrument Lab. Inc.
4401 Coal Avenue S. E.
States: New Mexico

New York, Buffalo
Electrical Instrument Labs.
932 Hertel Avenue
States: New York State Except Met. New York

New York, Great Neck, Long Island
Simpson Instrument Sales & Service, Inc.
130 Cutter Mill Road
Sales: Met. New York

New York, Long Island City
A & M Instrument Inc.
48-01 31st Avenue
States: Met. New York

New York, Syracuse
Syracuse Instrument Lab.
4995 South Avenue Box 96

New York, Vestal
Compton Industries Inc.
333 Vestal Parkway East
States: Up-State New York

North Carolina, Charlotte
Electro-Tech Inc.
3107 Cullman Avenue (Carolina Division)
States: North and South Carolina

Ohio, Cleveland
Wesciler Electric Company
4250 W. 130th Street
States: Ohio and Kentucky

Ohio, Cleveland
Pioneer Electronic Supply
3403 of Pioneer Standard Electronic Corp.
5403 Prospect Avenue
Ohio, Dayton
SREPCO Electronics Div. of Pioneer Standard Electronic Corp.
314 Leo Street

Area Code 513
BAldwin 4-3871

Oklahoma, Tulsa
Tri-State Instrument Lab.
3244 East 15th Street
States: Oklahoma

Area Code 918
WE 6-0489

Oregon, Portland
The Instrument Laboratory
1910 N. Killingsworth St.
States: Oregon

Area Code 503
BELmont 4-6683

Pennsylvania, Philadelphia
Sunshine Scientific Instrument
1810 Grant Avenue
States: Penn., Md., New Jersey below Trenton, Delaware

Texas, Dallas
Ultra Instrument Laboratories
3515 Swiss Avenue, Suite 117
States: Oklahoma, Texas

Area Code 214
TAYlor 6-6595

Utah, Salt Lake City
Stabro Laboratories, Inc.
23 Kensington Avenue
States: Utah, Southern Idaho

Area Code 801
IN 7-8011

Virginia, Falls Church
United Instrument Lab. Inc.
102 Jefferson St.
States: West Virginia, Virginia

Area Code 703
JEFFerson 2-4123

D.C., Washington
Electronic Wholesalers, Inc.
2345 Sherman Avenue N. W.
Washington, D. C. Area

Phone 202
Phone: HU 3-5200

Washington, Seattle
The Instrument Lab. Inc.
934 Elliott Avenue West
States: Oregon, Washington, Idaho and Montana

Area Code 206
ATwater 3-5850

Parts Depots only; no repairs.
Repair Stations only - no resale of parts.
(All other stations repair instruments and sell repair parts)
Parts Sales - Texas, Oklahoma, Texas only.

DON'T INVEST IN TEST EQUIPMENT 'TIL YOU COMPARE FEATURES WITH THE NEW SIMPSON LABORATORY LINE

PULS Generator...model 2620
No Unit Offers Such Accuracy, Versatility, and Set-Up Speed Within This Price Range

Time accurate real pulse repetition frequency and pulse duration simultaneously. Rise time <0.2 microseconds, decay time <0.01 microseconds. Pulse duration, counts usually variable from 0.1 to 1000 microseconds, jitter less than 0.05 microseconds. Pulse repetition rate: continuously variable from 10 to 100,000 ppm in four ranges. Price: $325

WRITE FOR COMPLETE SPECIFICATIONS

WIDE-BAND OSCILLOSCOPE...model 2610
For the 100th John Where You Don't Need an Expensive Specialized Scope

Here's a high performance, low cost oscilloscope that makes sure test equipment appropriate to further technical needs. It has a 100 MHz bandwidth, calibrated accuracy @ 1%, response linear on 50 or 100 MHz, DC to 100 MHz, <0.5% distortion, 0.5% rise and decay time; 0.1% optical and electronic, 0.5% frequency, 0.5% period, 0.1% trigger levels. Price: $575

WRITE FOR COMPLETE SPECIFICATIONS

LABORATORY STANDARD
VOLT-OHM-MILLIAMMETER...model 2600**
A Self-Powered Calibrator for Electrical Instrument Maintenance and High Accuracy Testing

This portable unit is supplied with all the features necessary for any electrical test, and can be used for DC and AC measurements. Price: $1620

WRITE FOR COMPLETE SPECIFICATIONS
WARRANTY

SIMPSON ELECTRIC COMPANY warrants each instrument and other articles of equipment manufactured by it to be free from defects in material and workmanship under normal use and service, its obligation under this warranty being limited to making good at its factory any instrument or other article of equipment which shall within 90 days after delivery of such instrument or other article of equipment to the original purchaser be returned intact to it, or to one of its authorized service stations, with transportation charges prepaid, and which its examination shall disclose to its satisfaction to have been thus defective, this warranty being expressly in lieu of all other warranties expressed or implied and of all other obligations or liabilities on its part, and SIMPSON ELECTRIC COMPANY neither assumes nor authorizes any other persons to assume for it any other liability in connection with the sale of its products.

This warranty shall not apply to any instrument or other article of equipment which shall have been repaired or altered outside the SIMPSON ELECTRIC COMPANY factory or authorized service stations, nor which has been subject to misuse, negligence or accident, incorrect wiring by others, or installation or use not in accord with instructions furnished by the manufacturer.

770 SERIES 2 ROLL TOP Complete with leads $70.95
EXTRA “270” SERIES 2 ACCESSORIES AVAILABLE

D.C. HIGH VOLTAGE PROBES

10,000 VOLTS — PART No. 0507 $10.20
25,000 VOLTS — PART No. 0508 $11.50
30,000 VOLTS — PART No. 0509 $12.50

CARRYING CASES

IFATHER CARRYING CASE FOR 270 SERIES 2 (No. 1818) $8.50
EVERLASTING VINYL PLASTIC CARRYING CASE FOR 270 SERIES 2 (No. 4236) $9.75

Simpson ELECTRIC COMPANY
3200 Kinzie St., Chicago 44, Illinois • Phone: EStebrook 9-1121
In Canada: Beek-Simpson, Ltd., London, Ontario