TABLE OF CONTENTS

SECTION 1
INTRODUCTION 1
 1.1 GENERAL 1
 1.2 SUPPLIES AND ACCESSORIES 2
 1.3 SAFETY CONSIDERATIONS 2
 1.4 TECHNICAL DATA 2

SECTION 2
INSTALLATION 8
 2.1 GENERAL 8
 2.2 UNPACKING AND INSPECTION 8
 2.3 WARRANTY 8
 2.4 ACCESSORIES 9
 2.5 INSTALLATION 9

SECTION 3
CONTACTS, CONNECTORS, AND INDICATORS 9
 3.1 GENERAL 9
 3.2 PARTS DESCRIPTION 9

SECTION 4
OPERATION 13
 4.1 SAFETY PRECAUTIONS 13
 4.2 TECHNICAL DATA 15
 4.3 MEASURING DC VOLTAGES, 250 MILE VOLT RANGE 15
 4.4 MEASURING DC VOLTAGES, 1 V RANGE 16
 4.5 MEASURING DC VOLTAGES, 2.5 THROUGH 500 V RANGES 17
 4.6 MEASURING DC VOLTAGES, 1,000 VOLT RANGE ONLY 18
 4.7 MEASURING AC VOLTAGES, 2.5 THROUGH 500 VOLT RANGE 19
 4.8 MEASURING AC VOLTAGES, 1000 VOLT RANGE ONLY 20
 4.9 MEASURING DECIBELS 21
 4.10 MEASURING RESISTANCE 22
 4.11 DIRECT CURRENT MEASUREMENT 23
 4.12 MEASURING DIRECT CURRENTS, 50 μA RANGE 24
 4.13 MEASURING DIRECT CURRENT, 0-1 THROUGH 0-500 mA RANGES 25

SECTION 5
BATTERY REPLACEMENT 26
 5.1 GENERAL 26
 5.2 BATTERY REPLACEMENT 26

LIST OF TABLES
 Table 1-1. Technical Data 2
 Table 1-2. Items and Accessories Supplied with This Instrument 7
 Table 1-3. Additional Accessories 7
SAFETY SYMBOLS

This marking, adjacent to another marking, or a terminal, or an operating device, indicates that the operator must refer to an explanation in the operating instructions to avoid damage to the equipment and/or to avoid personal injury.

WARNING

This WARNING sign denotes a hazard. It calls attention to a procedure, practice or the like, which if not correctly performed or adhered to, could result in personal injury.

CAUTION

This CAUTION sign denotes a hazard. It calls attention to a procedure, practice or the like, which if not correctly adhered to could result in damage to or destruction of part or all of the instrument.
WARNING

This instrument is designed to prevent accidental shock to the operator when properly used. However, no engineering design can render safe an instrument which is used carelessly. Therefore, this manual must be read carefully and completely before making any measurements. Failure to follow directions can result in serious or fatal accident.

SHOCK HAZARD: As defined in American National Standard, C39.5, Safety Requirements for Electrical & Electronic Measuring & Controlling Instrumentation, a shock hazard shall be considered to exist at any part involving a potential in excess of 30 volts rms (sine wave) or 42.4 volts DC or peak and where a leakage current from that part to ground exceeds 0.5 milliampere, when measured with an appropriate measuring instrument defined in Section 11.6.1 of ANSI C39.5.

NOTE: The probe measuring instrument for the measurement of leakage current consists essentially of a network of a 1500 ohm non-inductive resistor shunted by a 0.15 microfarad capacitor connected between the terminals of the measuring instrument. The leakage current is that portion of the current that flows through the resistor. The Simpson Model 229-Series 2 AC Leakage Current Tester meets the ANSI C39.5 requirements for the measurement of AC leakage current and can be used for this purpose. To measure DC Leakage current, connect a 1500 ohm non-inductive resistor in series with a Simpson 0-500 DC micrometer and use this as the measuring instrument.
SECTION 1
INTRODUCTION

1.1 GENERAL

1.1.1 The Simpson 150 Volt-Ohm-Milliammeter (hereafter referred to as the 150 or the Instrument) is a compact, easy-to-operate instrument which may be used for measuring electrical characteristics of circuits and circuit components. It features a taut-band movement suspension with diode overload protection to provide long, trouble-free service. The 100 degree mirrored dial arc and knife edge pointer provide excellent readability and eliminates parallax errors.

1.1.2 A polarity-reversing switch and one-knob Function/Range selector simplify operation of the Instrument. The internal batteries used to furnish the power required for resistance measurements are readily obtainable and replacement is accomplished quite easily.

1.1.3 Conforming to the latest engineering developments, most of the component parts are mounted on a printed circuit board. This ensures uniformity of performance, reduces maintenance and extends the useful life of the Instrument.
1.2 SUPPLIES AND ACCESSORIES
All supplies and accessories required for the operation of the 160 are furnished with each Instrument, and listed in Table 1-2.

1.3 SAFETY CONSIDERATIONS
This Operator's Manual contains cautions and warnings alerting the user to hazardous operating and service conditions. This information is flagged by CAUTION or WARNING headings throughout this publication, where applicable, and is defined at the front of the manual under SAFETY SYMBOLS. To ensure safety of operating and servicing personnel and retain the operating conditions of the Instrument these instructions must be adhered to.

1.4 TECHNICAL DATA

Table 1-1. Technical Data

1. DC Volts:
 Ranges: 2.5, 10, 50, 250V; 0.25, 1.0 and 1000V on separate jacks.
 Sensitivity: 20,000 µ per volt
 Rated Accuracy: Within ±2% DC and ±3% AC of full scale on all ranges.

2. AC Volts:
 Ranges: 2.5, 20, 50, 250, 500V; 1,000V on separate jack.
 Sensitivity: 5,000 Ω per volt.
 Indication: Full-wave average-responding; calibrated in RMS for sinusoidal waveforms.
 * Frequency: Rated accuracy to 100,000 Hz on all ranges through 50V; to 20 kHz on 250V range.

2-A. ** Rated Circuit-To-Ground Voltage: 1.000V AC/DC max.

* See typical Response Curves, Figure 1-2.
** Per ANSI C39.5 April 1974: "The maximum voltage with respect to ground, which may safely and continuously be applied to the circuit of an instrument."

3. Direct Current:
 Ranges: 1, 10, 100, 250, 500 mA; 50 µA on separate jack.
 Rated Accuracy: Within ±2% full scale, all ranges.
4. DC Resistance:

Ranges:
R x 1 0-3,000 Ω (30 kΩ center)
R x 10 0-30,000 Ω (300 kΩ center)
R x 100 0-300,000 Ω (3 kΩ center)
R x 1K 0-3 MΩ (30 kΩ center)
R x 10K 30 MΩ (300 kΩ center)

Accuracy: ±3 ar.

Max. Voltage
or Current
Delivered:
R x 1 50 mA short circuit
 1.5 V open circuit
R x 10 5 mA short circuit
 1.5 V open circuit
R x 100 0.5 mA short circuit
 1.5 V open circuit
R x 1K 0.75 mA short circuit
 22.5 V open circuit
R x 10K 0.075 mA short circuit
 22.5 V open circuit

5. dB Ranges:
 -20 dB to +10 dB on 2.5 V AC range
 -8 dB to +22 dB on 10 V AC range
 +6 dB to +36 dB on 50 V AC range
 +20 dB to +50 dB on 250 V AC range

Figure 1-1. Typical Frequency Response Curve
6. Movement: Taut-Band 100° arc, 50 μA full scale
7. Dial Arcs: One arc for ohms, one arc for DC, two arcs for AC, one arc for dB.
8. Scale Length: 3.0 inches
9. Lead Reversal: Polarity Reverse Switch; on DC and ohms
10. Operating Position: Horizontal or vertical; rubber feet prevent slipping on moderate slopes.
11. Batteries: 1.5 V AA penlight and No. 505 22.5 V
13. Test Leads: Custom molded elbow terminals; 3 ft. flexible probe tips.
14. Operating Temperature Range: 75 °F for rated accuracy; less than 4% additional error over the range of +25 °F to +130 °F.
15. Size: 4-9/16 x 3-5/16 x 1-3/4 (inches)
16. Weight: Approx. 12 oz., complete

Table 1-2. Items and Accessories Supplied with This Instrument

<table>
<thead>
<tr>
<th>Description</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probe Tip Test Leads</td>
<td>02055</td>
</tr>
<tr>
<td>Operator's Manual</td>
<td>05-111658</td>
</tr>
</tbody>
</table>

Table 1-3. Additional Accessories

<table>
<thead>
<tr>
<th>Description</th>
<th>Cat. Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vinyl Carrying Case</td>
<td>2935</td>
</tr>
<tr>
<td>Vinyl Carrying Case</td>
<td>2225</td>
</tr>
<tr>
<td>Strap-Fitted Carrying Case</td>
<td>2936</td>
</tr>
<tr>
<td>Vacuum Formed Carrying Case</td>
<td>2929</td>
</tr>
<tr>
<td>Simpson 150 AC Amp-Clamp</td>
<td>00532</td>
</tr>
<tr>
<td>160 Adapter Pins for Amp-Clamp</td>
<td>02096</td>
</tr>
<tr>
<td>Alligator Clip Leads</td>
<td>01927</td>
</tr>
</tbody>
</table>
SECTION 2
INSTALLATION

2.1 GENERAL
This section contains instructions for the installation and shipping of the 16D. Included are unpacking and inspection procedures, warranty, shipping, and installation.

2.2 UNPACKING AND INSPECTION
Examine the shipping carton for signs of damage prior to unpacking. Then unpack and inspect the Instrument for possible damage in shipment. If damage is noted, notify the carrier and supplier before using the Instrument. Also, check that all furnished items and accessories are included (Table 1-2). Save all shipping materials for future use.

2.3 WARRANTY
The Simpson Electric Company warranty policy is printed on the last page of this manual. Read it carefully prior to requesting a warranty repair. For assistance of any kind, including help with the Instrument under warranty, contact the nearest Authorized Service Center for instructions. If it is necessary to contact the factory directly, give full details of the difficulty, include the Instrument model number and date of purchase. Service data or shipping instructions will be mailed promptly. If an estimate of charges for nonwarranty or other service work is required, a maximum charge estimate will be quoted. This charge will not be exceeded without prior approval.

2.4 SHIPPING
Pack the Instrument carefully and ship it prepaid and insured to the proper destination.

2.5 INSTALLATION
The Instrument may be operated in a horizontal or vertical position.

SECTION 3
CONTROLS, CONNECTORS AND INDICATORS

3.1 GENERAL
All operating and adjustment controls, connectors, and indicators are described in this section along with a list (Table 1-3) describing their function. Become familiar with each item prior to operating the Instrument.

3.2 PANEL DESCRIPTION
Table 3-1 lists all Controls, Connectors, and Indicators.
Table 3-1. Controls, Connectors, and Indicators

1. Function and Range Switch: This switch, located in the lower center of the panel, is used to select the desired current, voltage, or resistance function and appropriate range.

2. Zero Ohms Adjust Control: This control, located at the lower left on the front panel, is used to obtain a "0" indication on the ohms scale when the test leads are shorted together. During operation, the zero indication is checked each time the ohmmeter is to be used. This permits compensation for aging internal batteries, and allows them to be used for a longer period of time.

3. Input Jacks: There are six input jacks: Four of these are on the right side of the panel and two directly below the zero adjustment screw. The four jacks on the right are identified COM –, +, +1V, and +50 μA +250 mV. The COM 4 jack is used for all ranges and functions with the exception of the 1V, 50 μA, 250 mV, 1,000 VDC and 1,000 VAC ranges. The two jacks below the instrument are identified 1,000 VDC and 1,000 VAC, and are used to extend the 500 VDC and 500 VAC ranges.

Figure 3-1. Front Panel
4. **Polarity Reversing Switch:**

 This switch, located above the ω ADJ control, allows simple lead polarity reversal when making DC or resistance measurements on any range except the 50 µA, 250 mV, or 1V positions. For normal operation, set the switch to +DC position. Using the COM – as the reference. Conversely, negative polarity signals can be measured without interchanging leads by setting the switch to the – DC position. When the VOM is set on any resistance range, this switch reverses the polarity of the measuring potential in the same manner.

NOTE: When making measurements of the 50 µA, 250 mV, 1V ranges, the reversing switch must be set to the +DC position to obtain readings.

4. **SECTION 4**

4. **OPERATION**

4. **WARNING**

 Before proceeding with the operation of the 160 review the SHOCK HAZARD definition printed at the front of this manual.

4.1 **SAFETY PRECAUTIONS**

4.1.1 Instruments of this type are intended for use only in low-power, consumer product type applications, such as TV or radio. Their use is not recommended in high-power circuits such as power plants, substations or high power transmitter circuits, where the likelihood of corona, together with sufficient energy to sustain flash-over arcs, is a serious hazard.

4.1.2 The small size of this Instrument might tempt the user to hold it in his hand while making measurements. Avoid this practice when working in circuits that might contain a shock hazard.

4.1.3 Inspect the test leads, probes, connectors, and insulating boots for damage or deterioration before each use. If any defects are found, replace the leads immediately with leads designed for this Instrument. Do not use test leads inferior to those furnished with the Instrument.

4.1.4 Never disconnect the COMMON lead from an active
4.1.5 Become familiar with the circuit to be measured and locate any shock hazards before attempting measurements. Keep in mind that high voltages might appear where not expected in a faulty circuit.

4.1.6 Electrical measurements in the presence of humidity or moisture are particularly hazardous. Hands, shoes, floor and workbench must be dry.

4.1.7 Avoid making measurements in circuits where composite voltages can exceed the instrument's safe limits. When measuring DC voltages, the instrument will not respond to (and thereby not indicate) the presence of AC components.

4.1.8 Be alert for the presence of corona in the measured circuit. Its presence indicates high voltage; an unexpected or unknown path might lead to a flash-over. A buzzing sound, odor of ozone and a pale blue emanation are indications of its presence.

4.1.9 Do not work alone when making measurements where a shock hazard can exist. Notify a nearby person of your intentions.

4.1.10 Do not connect the instrument to an electrically energized circuit in a hazardous area. Do not use the instrument to check electrical "blasting" circuits.

4.1.11 No general purpose VOM is to be used to make electrical measurements on blasting circuits or blasting caps. Use VOMs designed for this purpose only.

4.2 ZERO ADJUSTMENT
Before making any measurements, check to see that the pointer indicates zero when the instrument is in the operating position. If the pointer is off zero, make the required correction by turning the screw located directly below the "Simons 160" legend.

4.3 MEASURING DC VOLTAGES, 250 MILLIVOLT RANGE

Use care when making measurements with the 160 on the 250 mV range. An excessive voltage applied when in this range can be detrimental to the instrument.

a. Connect the black test lead into the COM – jack and the red test lead into the +50 μA +250 mV jack.

b. Set polarities switch to the + DC position.

c. Set the Range Selector Switch to the 50 μA position (common to the 50 VDC position).
4.4 MEASURING DC VOLTAGES, 1 V RANGE

a. Connect the black test lead to the COM – jack and the red test lead to the + jack.

b. Set the polarity switch to the + DC position.

c. Set the range switch to the 1 VDC position (common to the 10 VDC position).

d. Connect the black test lead to the negative (-) side of the circuit to be measured and the red test lead to the positive (+) side.

e. Read the voltage on the black arc marked DC. Use the figures 0-10 and divide the reading by 10 to obtain voltage reading. If the pointer moves to the left of zero, reverse the test lead connections, as the reversing switch must be kept in the + DC position for this range.

4.5 MEASURING DC VOLTAGES, 2.5 THROUGH 500 V RANGES

a. Connect the black test lead to the COM – jack and the red test lead to the + jack.

b. Set the range switch for any of the five DC volts range positions desired. These are marked 2.5, 10, 250, and 500 VDC. When in doubt as to which range to use, always start with the higher voltage range as a protection to the instrument.

c. Connect the black test lead to the negative (-) side of the circuit to be measured and the red test lead to the positive (+) side of the circuit.

d. Set the polarity switch to the + DC position. Turn the power on in the circuit to be tested. If the pointer deflects to the left of zero, the actual circuit polarity is the reverse of that anticipated. In this case, turn off power in the circuit to be tested, set the polarity switch to the – DC position and turn power on again.

e. Read the voltage on the black arc marked DC which is second from the top of the dial. If the voltage is within a lower range, the switch may be set for a lower range to obtain a more accurate reading.

2.5 VDC range: Use the 0-2.5 scale and read the value directly.
10 and 50 VDC ranges: Read the corresponding scale directly.

250 VDC range: Use the 0-2.5 scale and multiply reading by 100.

500 VDC range: Use the 0-50 scale and multiply by 10.

4.6 MEASURING DC VOLTAGES, 1,000 VOLT RANGE ONLY

WARNING

Use extreme care when working in high voltage circuits. Even though the instrument and test leads are well insulated for this voltage, do not handle when power is on in the circuit.

a. Set the range switch to the 1,000 VDC position (common with the 500 VDC position).

b. Connect the black test lead to the COM – jack and the red test lead to the 1,000 VDC jack.

c. Set the polarity switch to the + DC position.

d. Connect the black test lead to the negative (-) side of the circuit and the red test lead to the positive (+) side.

e. If the pointer deflects to the left side of zero, the actual circuit polarity is the reverse of that anticipated. (In this case see Paragraph 4.5, step d.)

f. Read the voltage, using the 0-10 scale on the black arc marked DC and multiply the reading by 10.

4.7 MEASURING AC VOLTAGES, 2.5 THROUGH 500 VOLT RANGE

The 160 rectifier circuit responds to the full wave rectified average value of the AC voltage being applied. The instrument dial, however, is calibrated in terms of RMS voltage, which will be correct for all sinusoidal waveforms.

NOTE: Since the 160 will respond to DC voltage when set on any AC volt range, an external blocking capacitor must be employed where measurements of AC superimposed on DC are encountered.

a. Connect the black test lead to the COM – jack and the red test leads to the + jack.

b. Set the range switch for any of the five VAC range positions desired. These are marked 2.5 VAC, 10 VAC, 50 VAC, 250 VAC, and 500 VAC. When in doubt as to which range to use, always start with the highest voltage range as a protection to the instrument.

c. Turn the power on in the circuit to be tested. Read the voltage on the red arc marked AC.

0-2.5 VAC range: Read the value directly on the special arc marked 2.5 VAC.
10 and 50 VAC ranges: Read the red arc marked AC, and use the corresponding black numbers immediately below the arc.

250 VAC range: Read the red arc marked AC using the 0-2.5 figures and multiply the reading by 100.

500 VAC range: Read the red arc marked AC using the 0-50 figures and multiply the reading by 10. If the voltage is within a lower range, the switch may be set for the lower range to obtain a more accurate reading.

4.8 MEASURING AC VOLTAGES, 1000 VOLT RANGE ONLY

WARNING

Use extreme care when working in high voltage circuits. Even though the instrument and test leads are well insulated for this voltage, do not handle when power is on in the circuit.

a. Set the range switch at 1,000 VAC position (common with the 500 VAC position).
b. Turn off power in the circuit being measured.
c. Connect the black test lead to the COM jack, and the red test lead to the 1,000 VAC jack.
d. Turn on power in the circuit being measured.
e. Read the voltage on the red arc marked AC using the 0-10 figures and multiply the reading by 100.

4.9 MEASURING DECIBELS

The decibel scale at the bottom of the dial is numbered from -20 to +10. To measure decibels, proceed according to instructions for AC voltages, and read the dB arc. The dB scale is calibrated for direct reading on the 2.5V range. Scale factors for other ranges and dB reference at 0.006 watts into 500 ohms are given in the table below.

<table>
<thead>
<tr>
<th>Range</th>
<th>1 mW @ 600</th>
<th>6 mW @ 500</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5V</td>
<td>direct</td>
<td>-7</td>
</tr>
<tr>
<td>10 V</td>
<td>+12</td>
<td>+5</td>
</tr>
<tr>
<td>50 V</td>
<td>+26</td>
<td>+19</td>
</tr>
<tr>
<td>250 V</td>
<td>+30</td>
<td>+33</td>
</tr>
</tbody>
</table>

4.10 MEASURING RESISTANCE

When resistances are measured, the internal batteries of the
160 furnishes power for the measuring circuit. Correction for battery deterioration over long periods of time is provided by means of the Zero Adjust control which is part of the ohmmeter circuit.

a. Set the range switch at the desired resistance range position.

b. Connect the black test lead to the COM – jack, and the red test lead to the + jack.

c. Connect the contact ends of the test leads together.

d. Observe the instrument indication. Look for a reading of "0" on the OHMS arc, which is at the top of the dial.

e. If the pointer does not read "0", rotate the ZERO OHMS knob at the lower left on the front panel until it does. If the pointer cannot be brought up to the "0" mark, replace the appropriate battery.

NOTE: Disconnect power from any resistor or circuit to be measured before measuring resistance. Do not apply any power before the measurements are completed and test leads are disconnected.

f. Connect the test leads across the resistance which is to be measured. If there is a "forward" and “backward” resistance, such as with diodes, observe polarity in the lead connections to control each direction of test. With the polarity switch in the + DC position, the + jack will provide a positive potential referred to COM – jack.

Setting the switch to the DC position will reserve the measuring potential.

g. Read the indication on the OHMS arc at the top of the dial. Note that the arc reads from right to left for increasing values.

h. Multiply the reading by the multiplier factor indicated at the switch position; the result is the resistance value in ohms. "K" on the dial and panel stands for "times one thousand".

NOTE: The resistance of nonlinear components will measure as different values on different ranges of the 160. For example, a diode could measure 80 Ω on the R x 1 range, and 300 Ω on the R x 10 range. This is normal and is the result of the diode characteristic. The difference in readings does not indicate faulty operation of the ohmmeter circuit.

4.11 DIRECT CURRENT MEASUREMENT

- Do not switch the range setting of the Range or Polarity Switches while the circuit under measurement is energized.
- Never disconnect the test leads from the circuit under measurement while the circuit is energized.
- Always turn the power off and discharge all the capacitors before the setting of the switches is changed, or the leads disconnected.
Never exceed the Circuit-To-Ground voltage of the instrument (1,000 V max; Table 1-1, 2-A).

Always connect the instrument in series with the ground side of the circuit.

In all direct current measurements, make certain the power to the circuit being tested has been turned off before connecting and disconnecting test leads or restoring circuit continuity.

4.12 MEASURING DIRECT CURRENTS, 50 μA RANGE

Never connect the test leads directly across any source of voltage when the 160 is used for current measurements. This will damage the instrument.

a. Connect the black test lead to the COM - jack, and the red test lead to the + 50 μA jack.

b. Set the range switch at 50 μA (common with 50 VDC).

c. With the circuit power turned off, open the circuit at the point where current is to be measured. Connect the instrument in series with the circuit, observing proper polarities when making connection.

d. Turn on power to the circuit being measured. If the pointer is deflected to the left of zero, the polarity is opposite to that anticipated. Turn power off and reverse the leads. The polarity switch must be kept in the + DC position on this range.

e. Read the current directly on the black arc marked DC, using the 0-50 scale. The current value is shown in microamperes.

f. Turn off power to the circuit. Remove the test leads and restore the circuit continuity.

4.13 MEASURING DIRECT CURRENT, 0-1 THROUGH 0-500 mA RANGES

a. Connect the black test lead to the COM - jack and the red test lead to the + jack. Set the polarity switch to the + DC position.

b. Set the range switch to any of the five mA direct current range positions, as desired. The switch positions are marked 1 mA, 10 mA, 100 mA, 250 mA, and 500 mA. When in doubt as to which range to use, always start with the highest ranges as a protection to the instrument.

c. When the circuit power is turned off, open the circuit at the point where current is to be measured. Connect the instrument in series with the circuit, observing proper polarities.

d. Apply power to the circuit being measured. If the pointer deflects to the left of zero, the polarity is reversed. Turn off the power. Set the polarity switch to
the DC position and then reapply the power.

e. Read the current on the black scale marked DC, which is second from the top of the dial.

<table>
<thead>
<tr>
<th>mA Range</th>
<th>Use Scale</th>
<th>Reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>0-10</td>
<td>Divide by 10</td>
</tr>
<tr>
<td>10</td>
<td>0-10</td>
<td>Read direct value</td>
</tr>
<tr>
<td>100</td>
<td>0-10</td>
<td>Multiply reading by 10</td>
</tr>
<tr>
<td>250</td>
<td>0-2.5</td>
<td>Multiply reading by 100</td>
</tr>
<tr>
<td>500</td>
<td>0-50</td>
<td>Multiply reading by 10</td>
</tr>
</tbody>
</table>

f. Turn off power to the circuit. Remove the test leads and restore circuit continuity.

SECTION 5
BATTERY REPLACEMENT

5.1 GENERAL
The instrument contains no operator serviceable parts, except the battery. This section contains instructions for replacing the battery. Refer all other servicing to an authorized service center or the factory.

5.2 BATTERY REPLACEMENT
5.2.1 When the Ohms Adjust control cannot be adjusted for zero ohms (with shorted test leads), it is generally an indication that a battery has reached the end of its useful life. The defective battery must be replaced. Failure to do so promptly can result in damage to the 160 due to chemical leakage from the battery.

5.2.2 Replace the battery: Remove the screw holding the back cover to front panel and separate the back cover from the front panel. Loosen the screw securing the battery contact plate located at the top of the 160 panel assembly. After the screw is loosened sufficiently, rotate the contact plate enough to allow removal of the batteries. When installing new batteries, note battery placement and polarity as indicated on the contact plate.
WARRANTY

SIMPSON ELECTRIC COMPANY warrants each instrument and other articles of equipment manufactured by it to be free from defects in material and workmanship under normal use and service. Its obligation under this warranty being limited to making good at its factory any instrument or other article of equipment which shall within 90 days after delivery of such instrument or other article of equipment to the original purchaser be returned intact to it, or to one of its authorized service stations, with transportation charges prepaid, and which its examination shall disclose to its satisfaction to have been thus defective; this warranty being expressly in lieu of all other warranties expressed or implied and all other obligations or liabilities on its part, and SIMPSON ELECTRIC COMPANY neither assumes nor authorizes any other persons to assume for it any other liability in connection with the sale of its products.

This warranty shall not apply to any instrument or other article of equipment which shall have been repaired or altered outside the SIMPSON ELECTRIC COMPANY factory or authorized service stations, nor which has been subject to misuse, negligence or accident, incorrect wiring by others, or installation or use not in accord with instructions furnished by the manufacturer.